
CS 4530: Fundamentals of Software Engineering

Module 2: From Requirements to Code: Test-Driven
Development

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• At the end of this lesson, you should be prepared to

• Explain the basics of the Test-Driven Design
• Develop simple applications using Typescript and Jest
• Learn more about Typescript and Jest from tutorials,

blog posts, and documentation

2

Non-Goals for this Lesson
• This is *not* a tutorial for Typescript or for Jest
• We will show you simple examples, but you will

need to go through the tutorials to learn the
details.

3

Review:
How to make sure we are building the right thing

4

Requirements
Analysis

Planning &
Design Implementation

Test Driven Development (TDD)
• Puts test specification as the critical design activity

• Understands that deployment comes when the system passes
testing

• The act of defining tests requires a deep understanding of
the problem

• Clearly defines what success means
• No more guesswork as to what “complete” means

5

The TDD Cycle

6

Satisfaction
Conditions

Executable
Tests

Testable
Behaviors

Executing
Code

Analyze Design Code

Example: a Transcript database
User Story
• User story: tells what the user wants to do, and

why.
• Example:

7

As a College Administrator, I want a
database to keep track of students, the
courses they have taken, and the grades
they received in those courses.

Satisfaction Conditions
• Satisfaction Conditions list the capabilities the user

expects, in the user’s terms.
• Example:

8

My database should allow me to do the
following:
• Add a new student to the database
• Add a new student with the same name as an

existing student.
• Retrieve the transcript for a student
• Delete a student from the database
• Add a new grade for an existing student
• Find out the grade that a student got in a course

that they took

Our next step is to turn these satisfaction
conditions into testable behaviors
• To do this, we will have to design our program at

least enough to give names to the things we want
to test.

• For our example, we need to design the external
interface for our database.

• We document this in a file we will call IDataBase.ts

9

We start with the interface

10

import {StudentID, Student, Course, CourseGrade, Transcript} from './Types'

export interface IDataBase {
addStudent (studentName: string): StudentID
getTranscript (id: StudentID): Transcript
deleteStudent (id: StudentID): void // hmm, what to do about errors??
addGrade (id: Student, course: Course, courseGrade: CourseGrade) : void
getGrade (id: Student, course: Course) : CourseGrade
nameToIDs (studentName: string) : StudentID[]

}

• The types are all abstract
• In the process of writing this down, we’ve discovered some more design

decisions:
• How to identify a student to the DB user
• What to do about exceptional conditions in deleteStudent and elsewhere
• We needed a new method to get from a student name to their ID.

Now we can write down some testable
behaviors.
• These could serve as titles for our tests

11

Testable Behaviors:
• addStudent should add a student to the database
• addStudent should return an ID that is distinct from any ID in

the database
• addStudent should permit adding a student with the same

name as an existing student
• Given the ID of a student, getTranscript should return the

transcript for that student
• Given an ID that is not the ID of any student, getTranscript

should <hmmm…. What *should* it do??????>

Writing down the testable behaviors may
uncover more design decisions to make
• Here we realized that the user’s satisfaction

conditions didn’t give us any guidance on the
exceptional condition “not an ID of any student”

• What should getTranscript do?
• Possibilities:

• return an error value (undefined, -1, etc.)
• Throw an exception

12

Testable Behaviors, revised

13

Testable Behaviors:
• addStudent should add a student to the database
• addStudent should return an ID that is distinct from any ID in

the database
• addStudent should permit adding a student with the same

name as an existing student
• Given the ID of a student, getTranscript should return the

transcript for that student
• Given an ID that is not the ID of any student, getTranscript

should throw an exception

We still need to design some more before
we can write some tests
• We wrote:

• But how can we test to see if the returned
transcript is the right one?

• It must be time to elaborate the design of the type
Transcript.

14

• Given the ID of a student, getTranscript should
return the transcript for that student

Types.ts

15

// Types.ts
// Types for the transcript database.

export type StudentID = number;
export type Student = { studentID: number, studentName: StudentName };
export type Course = string;
export type CourseGrade = { course: Course, grade: number };
export type Transcript = { student: Student, grades: CourseGrade[] };
export type StudentName = string

A tiny example of Jest: Types.test.ts is

16

import {StudentID, Student, Course, CourseGrade, Transcript} from './Types'

const alvin : Student = {studentID: 37, studentName: "Alvin"}
const bryn : Student = {studentID: 38, studentName: "Bronwyn"}

describe("exercise Types.ts", () => {

test("extracting a studentID should give the ID", () => {
expect(alvin.studentID).toEqual(37)
expect(bryn.studentID).toEqual(38)

})

// this illustrates what Jest shows when a test fails
test("extracting a studentID should give the name", () => {

expect(alvin.studentName).toEqual("Alvin")
expect(bryn.studentName).toEqual("Jazzhands")

})

})

import {StudentID, Student, Course, CourseGrade, Transcript} from './Types'
import { DataBase } from './dataBase';

let db: DataBase;

beforeEach(() => {
db = new DataBase();

});

// this may look undefined in TSC until you do an npm install
// and possibly restart VSC.
describe('tests for addStudent', () => {

test('addStudent should add a student to the database', () => {
expect(db.nameToIDs('blair')).toEqual([])
const id1 = db.addStudent('blair');
expect(db.nameToIDs('blair')).toEqual([id1])

});

Now we can start writing tests

17

Start each test with a new
empty database

Most tests are in AAA form:
Assemble/Act/Assess

18

test('addStudent should add a student to the database', () => {
// const db = new DataBase ()
expect(db.nameToIDs('blair')).toEqual([])

const id1 = db.addStudent('blair’);

expect(db.nameToIDs('blair')).toEqual([id1])
});

Assemble (and check that
you’ve assembled it
correctly)
Act (do the action that you
are trying to test)

Assess: check to see that
the response is correct

test('addStudent should return an unique ID for the new
student',

() => {
// we'll add 3 students and check to see that their IDs
// are all different.
const id1 = db.addStudent('blair');
const id2 = db.addStudent('corey');
const id3 = db.addStudent('del');
expect(id1).not.toEqual(id2)
expect(id1).not.toEqual(id3)
expect(id2).not.toEqual(id3)

});

Tests (2)

19

Tests (3)

20

test('the db can have more than one student with the same name',
() => {

const id1 = db.addStudent('blair');
const id2 = db.addStudent('blair');
expect(id1).not.toEqual(id2)

})

Tests (4)

21

test('getTranscript should return the right transcript',
() => {

// add a student, getting an ID
// add some grades for that student
// retrieve the transcript for that ID
// check to see that the retrieved grades are
// exactly the ones you added.

});

Tests (5)

22

test('getTranscript should throw an error when given a
bad ID',

() => {
// in an empty database, all IDs are bad :)
// Note: the expression you expect to throw
// must be wrapped in a (() => ...)
expect(() => db.getTranscript(1)).toThrowError()

});

Now we can write some code

23

import {StudentID, Student, Course, CourseGrade, Transcript} from './Types'
import { IDataBase } from './IDataBase'

export class DataBase implements IDataBase {

/** the list of transcripts in the database */
private transcripts : Transcript [] = []

/** the last assigned student ID; assumes studentID is Number */
private lastID : number = 0
constructor () {}

Code (2)

24

/** Adds a new student to the database
* @param newName - the name of the student
* @returns the newly-assigned ID for the new student
*/
addStudent (newName: string): StudentID {

const newID = this.lastID++
const newStudent:Student = {studentID: newID, studentName: newName}
this.transcripts.push({student: newStudent, grades: []})
return newID

}

Code (3)

25

/**
* @param studentName
* @returns list of studentIDs associated with that name
*/
nameToIDs (studentName: string) : StudentID[] {

return this.transcripts
.filter(t => t.student.studentName === studentName)
.map(t => t.student.studentID)

}

Activity
• Download and unpack the starter code
• Write down the testable behaviors for the satisfaction

condition

• Identify at least two exceptional conditions or design
decisions associated with these testable behaviors

• Write Jest tests for your testable behaviors
• Implement a method addGrade that passes your tests.

26

• Add a new grade for an existing
student

Your instructor will
give you detailed
instructions on
where to get the
starter code and
how to submit
your work.

Learning Goals for this Lesson
• At the end of this lesson, you should be prepared to

• Explain the basics of the Test-Driven Design
• Develop simple applications using Typescript and Jest
• Learn more about Typescript and Jest from tutorials,

blog posts, and documentation

27

The TDD Cycle

28

Satisfaction
Conditions

Executable
Tests

Testable
Behaviors

Executing
Code

Analyze Design Code

	CS 4530: Fundamentals of Software Engineering��Module 2: From Requirements to Code: Test-Driven Development
	Learning Goals for this Lesson
	Non-Goals for this Lesson
	Review:�How to make sure we are building the right thing
	Test Driven Development (TDD)
	The TDD Cycle
	Example: a Transcript database�User Story
	Satisfaction Conditions
	Our next step is to turn these satisfaction conditions into testable behaviors
	We start with the interface
	Now we can write down some testable behaviors.
	Writing down the testable behaviors may uncover more design decisions to make
	Testable Behaviors, revised
	We still need to design some more before we can write some tests
	Types.ts
	A tiny example of Jest: Types.test.ts is
	Now we can start writing tests
	Most tests are in AAA form: Assemble/Act/Assess
	Tests (2)
	Tests (3)
	Tests (4)
	Tests (5)
	Now we can write some code
	Code (2)
	Code (3)
	Activity
	Learning Goals for this Lesson
	The TDD Cycle

